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Vacuum stress tensor for a slightly squashed Einstein 
universe 

Raymond Critchleyf and J S Dowkert 
f School of Physics, The University, Newcastle-Upon-Tyne, NE1 7RU, England 
i: Department of Theoretical Physics, The University, Manchester, M13 9PL, England 

Received 7 January 1981 

Abstract. The effect of the deviatioq from spherical symmetry on the effective Lagrangian 
of a scalar field is investigated. 

1. Introduction 

The system under study here is a free scalar field, massive and conformally coupled on 
an Einstein universe with a ‘squashed’ spatial section, i.e. on a frozen Mixmaster 
universe. 

There are several reasons for choosing this space-time. Firstly it is not conformally 
flat. This enables us to study the massless case more generally. Secondly, it is soluble in 
perturbation expansion about the (exactly soluble) spherical problem (Dowker and 
Critchley 19771, and thirdly, deviations from spherical symmetry have been included in 
the calculations of Fischetti et a1 (1979) on the back reaction problem in the early 
universe. 

The particular spatial section we discuss is the one that retains a certain amount of 
symmetry. The symmetry group of the three-sphere S3 is SU(2)XSU(2), 
corresponding to body-fixed and space-fixed ‘rotations’ of the (ideal) spherical top 
whose configuration space is isometric to S’. A ‘symmetric’ top (an oblate or prolate 
spheroid) has a configuration space whose continuous symmetry group is SU(2) x 
SO(2). This is the case in which we are interested, and the evaluation of the mode 
functions and energies is standard (Ha 1973). 

Our limited aim is to obtain the effective Lagrangian and vacuum-averaged stress 
tensor. We begin the calculations by discussing the mode problem. 

2. Modes and Green function 

The metric is 

(ds)% = (dt)2- 1: (de)’ - 1: (d+)2 -2l: COS e d 4  dd/ - (sin2 01: + l: cos2 e )  d42.  (1) 

The conformally coupled Klein-Gordon equation 

(U+p2+R/S)c#J = o  
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takes the form 

where the Xi are the differential generators of the SU(2)  (left) symmetry group. 

it is sufficient to discuss the spatial modes. Thus define the eigenvalues E 2  by 
The space-time is static, and previous work (Dowker and Kennedy 1978) shows that 

where R = (211; - 1;/21;). 
The solutions of ( 4 )  are just the normalised rotation matrices 

u i n ( q )  = [ I " ' / (  1 6 ~ ~ 1 : 1 3 ] ~ ' ~ ] D ~ , ,  (4) ( 5 )  

where q E SU(2)  and can be used to label the points of the spheroid because of the left 
SU(2)  symmetry of the space. The index ranges are the usual ones, 1 = 2j + 1 = 
1 , 2 , 3 ,  , . . m, n = j ; .  . . - j and E 2  depends on only 1 and m ; X 2  corresponds to J 2  and 
X3 to .TFft, up to a sign. The degeneracy of the eigenvalue E 2  is thus 1 (the range of a )  
and for E:,, we find 

E' l x m  --[-+a(m2+ - 1 :  1 l2  4 
12(1 + a )  ) ] + P 2  

where 1 + a  = l:/lz. 
The Feynman Green function can be calculated in the standard way to give 

x exp [im (I I /  - $71 exp [in (4  - 491. (7 1 
The sum over J covers half-integral and integral values of J which correspond to a 

The Green function satisfies 
sum over 1 in equation (6) .  

(O+p2+R/6)G4=S(x ,  x'). (8) 

In order to compute the stress tensor we require a regularisation scheme, the most 
suitable one for the present case being the zeta function method (Dowker and Kennedy 
1978). This entails finding a solution to 

( O + p 2 + R / 6 ) G ~  = GJ-' ( 9 )  

with the boundary condition that as U + 1 we regain equation (7) .  

G3, have the representations 
The four-dimensional zeta function, G4, and the zeta function on the spatial section, 
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and is independent of z,. 

The inverses of equations (10) are 

m -i 
21r 

-i 

(~ ‘ (s) lx ” (O))~ = - (2s)’-”r(v) dp’ exp (ip’s)G;, 

m (11) 
(~’(s) lx ’ ‘ (O))~ = - (2s)’-T(v) dp’ exp (ip’s)G;. 

21r 1-m 

Since the ( ~ ’ ( s ) l x ‘ ’ ( O ) ) ~  are independent of v we have the freedom to put any value of v 
in equation (11); in particular if we choose v = 1 we can substitute equation (11) into 
equation (10) and find an expression for G i  in terms of G4: the result is 

which implies 

(13) 
( t  - t’)n m 

x 1 (-i)“- Ey,K(n - l ) (n  - 3) (n  - 5 )  . . . ( n  + 3 - 2v). 
n = o  n !  

Although (13) has been derived for integral U, we can easily rewrite it in terms of 
gamma functions and thereby allow the v to become arbitrary. It is interesting to note 
that the time dependence of equation (13) is only’of exponential form when z, = 1. It is 
easy to show that equation (13) satisfies equation (9) by direct substitution and use of 
equation (4). As far as ( TPy) is concerned, we only need the expansion (13) up to n = 2. 

3. Calculation of (T,”) 

It is conventional to write the vacuum energy-momentum tensor as the coincidence 
limit 

2 1 1 
x + x  3 6 3 

( T,”) = lim, [ -i (- a, a 1’’ - - g,’ aUg“ a,. - - V, V” 

A peculiarity of the zeta function method is that the operator O + p 2 + R / 6  in 
equation (1.4) produces, by virtue of equation (9), a finite quantity. In other regularisa- 
tion schemes this is not so, and one usually uses equation (4) to remove the correspond- 
ing term in equation (14). So is there a possibility of an ambiguity being present in our 
regularisation scheme? To take this possibility into account we add to the right-hand 
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side of equation (14) the term 

-$i(A -- 1)g,”(Cl+~2+R/6)G4Y. 

Our reason for doing this will become apparent shortly. 

the d i m  imply (Vilenkin 1968) 
We can simplify equation (14) for the case in hand by noting that the properties of 

so that 

4,(Tguu4,cy -- --($U4 

a,a.#+ +,a,,, V , V y  -+ a,a” 
and 

and equation (14) becomes 

We will show that only for the situation A = 0 is there a consistent renormalisation 
possible for the fundamental constants of the system (e.g. Newton’s constant) when the 
zeta function method is invoked. 

If we wantzd, we couid avoid this problem entirely by returning to the effective 
Lagrangian, renormalising and then obtaining the renormalised ( TWy) by variation. This 
is the only foolproof method. (Tn fact, because of the symmetries of the manifold, one 
can use this method to avoid local expressions like equation (14) altogether, as we shall 
see later.) 

In order to demonstrate the consistency of our renormalisation scheme, we first note 
that the effective Lagrangian is given by 

If we substitute the expansion 

(which is derivable trom equation (lo), using DeWitt’s (1965) expansion for the 
(x’(s,ix’’(O)) into equation (10). then we can derive an expansion for the effective 
Lagrangian in terms of the a,. By adding the classical Lagrangian to this expansion, we 
can obtain values for the renormalised Newton’s constant in terms of the bare values 
and a curvature-dependent addend. We can clearly do something similar for the 
energy-momentum tensor via equation (15), if we substitute equation (15) into the 
right-hand side of the Einstein equations 

-(T,”)=g,”iZ+(l/~rr~)(R,”-~g,”R). 

The conclusions are 
2 L-”  

Ul(Cc. ) ____ - --I_ - R t  
1 (P z, - y-- H 

A r e n = P i - y -  
3 2 r -  (v-3)(v-2)(v-l)’ 16~G,, ,  16rG 32rr2(v-l)(v-2)’ 

(19) 
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from equation (17) and 

( P 2 P  3 
A re,, I= k -t --.j [A ( v - 1) - 11 - 

3 2 ~  ( v - l ) ( v - 2 ) ( v - 3 ) ’  
(19) 

from equation (16). 
Thus, if we use the zeta function method, self-consistency arguments force us to 

drop the third term on the right-hand side of equation (16). In what follows we shall 
assume that this has been done. This is simply a technical device that produces the 
correct coincidence limit expression for ( T‘,’). 

It is of interest to note that the trace of (T,”) satisfies 

(T,”) = -i(,x’G; -G:-’), (21 )  

If one uses equation (181, then it is clear that equation (21) contains no term which is 
quadratic in the curvature, so that as far as the massless case is concerned, no 
rznormalisation need be done in computing (T,”), and for m = 0 equation (21 )  is the 
statement of the trace anomaly. 

On performing the differentiations in equations (16), we find that the (T,”) can be 
expressed in terms of three independent functions, 

2 V (  TI1) = ( 1 / 6 a 2 ) (  1 - 2cu + h 2 ) u  (v) - ( l / 2 u 2 ) ( b ( v )  - 4c(v)) = ( T2’)2 V, 

2 V (  T33)  = - - (4 /a2 ) (1  + a ) c  (v) - (1/3a2)(1 - ct t. a 2 ) a  (v), 

where 

(we take v + 1 for the physical limit). 

this we encounter summations such as 

2 To evaluate the functions we expand Elrn in terms of small a, up to order a . In doing 
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to evaluate these, we write 

&”=- exp [-x (n2  + p2a2)1. 

The summation can be performed using (Gradshteyn and Ryzhik 1980) 

1 “ d x  
__ -exp ( - ~ @ ~ u ~ ) [ u 3 ( 0 1 2 ~ / 7 ~ )  - 11 
2r(4 x , - ~  

Finally, if we use the representation 

e,(Oliv/x) - 1 = 
m 

exp (-n2rr2/x) 
fl=l 

and perform the integration, we find 

As a check it is possible to take the massless limit of equation (27) and one obtains 
4-v = 5(2v) ,  as should be obvious from equation (24). 

Since the form that the functions a, b. and c take in terms of the q L v  is rather long, 
we relegate these terms to the Appendix. 

As far as our regularisation scheme for the massive case is concerned, it turns out 
that the class of terms which derive from the second term in equation (27) leads to a 
renormalisation of the cosmological constant etc. The first term in equation (27) is a red 
herring in the sense that eventually it is cancelled, so that finally all we have is a series of 
Bessel functions of integral order. The renormalised stress tensor can then be derived 
from equations (22) and (Al . l )  but with Y += 1. 

It should be clear from the above discussion that we are going to encounter 
difficulties in taking the massless limit of our renormalised stress tensor. In the massless 
limit both the second and third terms in equation (27)  have In m 2  behaviour (such that 
they both cancel each other). Throwing away the second term, therefore, will produce 
an infrared divergence in (T,”),,, and in Zren. We thus cannot obtain the massless limit 
of (T,v)ren, although we can obtain the trace anomaly by (T,’)ren = -2m2 a/am2Lfr,,. 

A similar situation has been encountered by Bunch and Davies (1978). These 
authors consider a non-conformally coupled scalar field in a Robertson-Walker 
space-time. Their renormalisation prescription is to subtract from the massless Green 
function a DeWitt-Schwinger expansion up to order R2.  This brings in an infrared 
divergence of the type mentioned above in their expressions for the stress tensor. Bunch 
and Davies have shown in the massless limit that these infrared divergences can be 
absorbed into the renormalisation of the coupling constants associated with terms 
quadratic in the curvature in the classical Lagrangian. After removal of these diver- 
gences Bunch and Davies then take the massless limit. 
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Fortunately, for the case of the squashed Einstein universe we can examine the 
rigorously massless scalar field without introducing any spurious infrared divergences, 
and we will now show how this can be done. 

4. The massless limit 

The massless limit of equation (22) is 

+ 2  -2 In 2 + 2-y +In 7 
1 2 

0 CY 

180.rr2a4 ( v  - 1 L 
(To)=-T=- 

1 
4 8 0 ~  a 45 

+ 

The other ( T / )  are given by equations (23) but with 

13a2  
CYl(3) + --+-a+---, 

71 * ) ( A yi) 216 
---CY + - C Y * - -  

a 12 360 2016 630 
11 259 3023 

2 

R = l / ( v  - 1) +2  -2 In 2+2y  +In (a2/L2)  a+ In (a2/L2) .  (29) 

Our regularisation scheme is to subtract a term from T proportional to 
R 2  -3RW.RW” and correspondingly a term from ( T W Y )  proportional to 
(2/Gg)(S/t?g,”) c g ( R 2  - 3R,,R’”“), the constant of proportionality being chosen so 
that we can remove the terms which contain the poles. Our final result for (T,,),,, is 
found to be merely equation (29) without the fi terms. The same value can also be 
obtained from the massive case if we adopt Bunch and Davies’ arguments for removing 
the infrared divergences. 

We note in passing that there are two ways to compute the variation of the curvature 
and metric-dependent terms in the Lagrangian. We can either substitute the appro- 
priate squashed Einstein values into the right-hand side of 

which is tedious, or more simply we can rewrite S/Sg,, in terms of S/Sa and S / S a  and 
vary equation (28) directly. Both methods are found to be in agreement. In particular, 
for the latter method we can write 

= g L  + gL3 a/ag33 + 2gi2 a/ag32 
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but 

imply 

z) J q 2 .  1 2 a l - a + a 2  
(Tll)=---(a -+-- J-& aa 1-2a+3a2aa  

The pole term in 9 (equation (28)) implies that TI’ has a pole term given by 

(T1’)=(-180.rr~a~)-~(2a - 5 a 2 ) ( v -  l)-’. (32) 
This value agrees with equations (29) and (23) and our regularisation scheme is valid. 

(33) 

By varying equation (28) we can also determine the anomaly from 

(T,’*) = ( T ~ O )  - (21 J<)(i: a ia i ?  + 1: aiai ; )  4<2 
= -2 - (2 /J<)a2 ( a / a a 2 ) J q 9 =  - a 2 / 9 0 ~ 2 a 4 .  

That this is non-zero is due to the presence of the In ( a 2 / L 2 )  in the Lagrangian. 

5. Alternative approach 

From the foregoing discussion it shouid be clear that the Lagrangian alone is sufficient 
to determine all the T,”, although we would need to find it to order a 3  if we use the 
above variational method. 

In this alternative approach, because of the static nature of the metric, all one needs 
is the integrated zeta function J3(v) on the spatial section given by 
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in the massless case, for simplicity. This, when expanded in powers of a, gives 

l 3 (  b’) = a 2”{5R(2 V - 2) - :al/lR(2 V - 2) + 4 a  2(i$vlR(2 V )  + 2 V ( V  -t 1) 

[&lR(2V -2) -&lR(2V)f&lR(2V + 2111 + 0((u3) (35) 

The effective Lagrangian is given as the spatial integral of equation (17) in terms of 
in terms of the Riemann zeta function l R .  

the equal-time four-dimensional zeta function 

For static space-times 14(v) can be related (Dowker and Kennedy 1978) to 13(v): 

We shall not pursue this method much further, but shall just point out that L4(0) is 
non-zero here, in contrast to the spherical Einstein case. This is easily seen because the 
above explicit form for l3(v) has a pole at v = -i, coming from the final lR(2v + 2). 

The general value of 14(0) is given in terms of the proper-time expansion coefficient 
uz as (Dowker and Critchley 1977) 

The expression for u2 is standard and is 

(33) 

To order a 2  we find u2-  8a2/45a4  and so 14(0) -ia2/45u. 
The reader can check that this agrees with the explicit pole in 13(v). It also gives the 

a2 = i g ~ ( R ~ p ~ s R ‘ ‘ ~ ~ ~  1 -RapRap). 

trace anomaly correctly. 

6. Proof that the T,” can self consistently sustain a squashed Einstein universe 

We shall show that for certain values of the radius a, and the distortion parameter, that 
the renormalised energy-momentum tensor for the massless scalar field can satisfy 
Einstein’s equations i.e. 

(40) 
1 

- ( TWv Len = L n g , ,  + (1 /8 r G A ( R  irv - ; I S ~ ~ ~ R  1. 
Defining the trace of (T,”) by T and expanding both sides of equation (40) in terms of T, 
we find (8n-G = 1) 

(To’) - $T = ( 3  + a - a ’ ) / 2 ~  = A 1 +BIN + C‘la 2, 

( TZ2) - aT = (TI’) - aT = -( 1 + 3a + 3a2) /2a2  = A, + Bza + C2a2, 

(T3’) - t T  = -( 1 / 2 ~  ’)( 1 - 5 
(41) + 5 ~ 2  ’) = A3 + B3a + C3a 2, 

(rZ3) = (4a/a2) COS e ( i  - a )  = C O S  e(B4a + C4a2),. 
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Luckily the coefficients on the right-hand side, i.e. the& 
for example, we can invoke the tracelessness of equations (28) and (29) to show 

and e, are not independent; 

Finally the divergenceless condition V,(T,”) = 0 can be used to show A2 = A3, 

B3 = B2 +B4, c3 = e2 + c4 which corresponds to T23 = cos 8 ( T33 - Tll). Thus eleven a 
priori independent coefficients have been reduced by these six conditions to give just 
five independent coefficients. If we choose B4, c4, AI, B1 and e1 as our independent 
coefficients, then from equation (41) 

i.e. two equations for two unknowns, a ,  a. Solutions are possible to all orders in a ,  
although we stop at order a2.  

In equation (34), 

1 107 ln(a2/L2) 
21600.rr2a4 - 180.rr2a4 ’ B1= Cl = 

1 
A1 = 

480.rr2a4 ’ 720.rr2a4 ’ 
B4 = -39/2700.rr2a4 + (1/30.rr2a4) ln(a2/L2),  

199 583 769473) 
c4 = - 
- 

, ~ n a ~ / ~ ~ .  
7 -____ 

2419 200.rr2a4-50 400.rr2a4 9 0 ~  a 

(43) 

Solutions are possible which satisfy a << 1, but only for a certain range of values of 
Lla. 

In order to obtain some sort of feel for the numbers involved here, we will assume 
certain values of the ratios Lla, substitute these into equations (42) and solve for a and 
a. We will then see if our a << 1 condition holds. 

From equation (42) (to order a only, for simplicity) 

3 -- 
2a2-  (44) 

Equation (44) is then easily solved for a2. Rewriting A I  = f/a4, B1 -;a4 = d/a4, 
B4 = 4b/a4 and C4 = 4c/a4, we find 

1 - b/a2 
1 + c/a2’ 

a=------- j = 2db -2fc. (45) 

If we choose the values for L/a >> 1, L / a  << 1, L / a  = 1 and L /a  = 0.7 then we find, 
respectively, a = 1.1 x IO-’ (In L2/a2)l12, 4.3 x 
and a = 0.43, -0.43, -0.19,0.027. If we wish to reinstate the units we should multiply 
all quantities which have the dimensions of length by (8 . r rAG/~~)”~ .  

(In a2/L2)’12, 1 x 1.1 x 
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7. Conclusions 

These results show that a squashed Einstein universe can self consistently be main- 
tained by the vacuum energy-momentum tensor of a massless scalar field. One would 
expect the same of other fields. Of course the most interesting question is the stability of 
this self-supporting solution. 

It is a classical result, due to deSitter, that the spherical Einstein universe is unstable 
against radial perturbations, and one would like to establish a corresponding result in 
the self-consistent case for both radius and shape deformations. This we defer to 
another time. 

A final qualification: since we have totally ignored graviton problems, we do not 
claim that the self-consistent set-up of § 6 has any connection with reality nor that it is 
technically consistent, in a field-theoretic sense. 

In checking our approximation (Y << 1, we found that, although it was a reasonable 
approximation for L / a  - 1, it was unreliable for other values for L / a ,  as the results 
quoted above suggest. 
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Appendix 1. 

In this appendix we list the values of some functions defined earlier in the text. They are 
particularly nasty expressions because they have been calculated for the case of a 
massive scalar field. The massless limit of these functions has already been quoted in 
the main body of this paper. 

r(v -1) 
r(+k a(v)=--- - [ A ( V ) d 3 / 2 - ,  +B(v)41/2-u+ c ( Y ) 4 - 1 / 2 - v  + D ( V ) 4 - 3 / 2 - u ,  

A ( Y )  = U’”-’ [ 1 -:a (U - i) + &a2( Y’ -a)], 
~ ( v )  = a2u-1[p2a2( -1  +$x(v -z)-iTa (V -+) )+$(Y’ (Y -+) (~  - Y)], 
C ( v )  = a 2 ” - ’ [ p 4 a 4 ( - f ( Y ( Y - ~ ) + ~ ( Y 2 ( Y  2 -i)) 

1 3 2 2  

2 2 4 2  2 1 2  2 1 + p  a (ga ( Y  -a) -?(Y (v -T))+&a2(v2-+)], 

D ( v )  = ( v 2  - a ) [ p 2 a 2 / 4 5  + p4a4/36 + p 6 a 6 / 8 0 ] ,  

b ( v )  = ( - p 2 a Z a ( ~ ) + [ A ( y ) ~ 5 / 2 - - u  + B ( v ) 4 3 / 2 - ~  

+ c ( ~ ) 4 ~ / ~ - ~  + ~ ~ ~ ) ~ - ~ / ~ - ~ i ) r ( ~  - i ) /42w,  
- 4) 

C ( v )  = ~ [ E ( ~ ) 4 5 / 2 - ~  + F ( ~ ) 4 3 / 2 - ~  + G ( v ) 4  i / z - v  

+N(Y)4-1/2-” + L ( V ) 4 - 3 / 2 - v 1 ,  
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(A l . l )  

Appendix 2. Computation of the Riemann tensor 

The metric of the space-time is given by 

goo = 1, gll = 4, gZ2 = --(C sin2 e + I :  cos2 e), 
(A2.1) 2 2 

g33 = -13, g32 = -13 COS e = g23. 

Its inverse is 
goo = 1, 

g33 = -1p: -(cot2 @ ) / l ? ,  

gl1 = -1/1;, gZ2 = -I//? sin2 e, 
g23 = g32 = (cos e ) / / ?  sin2 8. (A2.2) 
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The Christoffel symbols are defined by 
rs = L  s a  

&V z g  (gcYw,t, + g a w  - -g lLv,oL)  

but the only non-zero ones are 
r1 -1 r i2 = A sin e cos 0, 

r:, = -(1/2 sin e)( i  - A  cos2 e), 21 - (cot - A  1, 
3 2 - 2 6 n  @ ) ( l + A ) ,  

l-2 -I 

1955 

(A2.3) 

and those found by symmetry in the lower indices. 
The Riemann tensor is given by 

- R = a[nr*vpl + rFLoLOl rLorP1 
and we find 

-R1212=$[1-3A + A  (COS' 6)(5+A)], 

(A2.5) 

= :[I + A  + A  (1 + A )  COS' e], 
-RI213 = $(1 + A ) '  COS 8, 

- H I 3 1 3  = $(I +A)' ,  -R2131 =$(1-3A), -R3131 =:(I + A ) ,  

- ~ ' 2 2 3  = :(I + A  1' COS 0, 

- R 3332 = t(i + A )' COS e, 
(A2.6) 

The other components, except those that can be obtained from the above by symmetry, 
are zero. 

2 2  - R '312 = i(1 + A ) '  cos 8, A = 13/11 - 1. 

The trace of the RCLvap can be found. We obtain 

RI1 = (1/2l;)(2l: - l : ) ,  

R33 = 1;/21;, 

R = 211: - 1:/21;. 

Rz2 = (1/21;)(21; - l i ) ,  

R3' = 0, R~~ = (A COS ell?), 
(A2.7) 

When computing the variation (31), we note that 

O R l l =  -(1/41?)A(l+A), V,VIR1" = (1/41?)A(l + A ) .  (A2.8) 

Naively, we might have expected that the derivatives of the Riemann tensor would be 
zero here, since from equation (A2.7) RI '  is a constant, but careful analysis refutes this 
expectation. 
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